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Abstract 

Symmetry-adapted functions (SAF's) of order L can be 
generated recursively from powers of a seed function 
or from products of SAF's having lower order 1. The 
algorithm uses a symmetry-adapted version of the de- 
composition of products of spherical harmonic functions 
via Wigner 3-j symbols. The totally symmetric SAF's 
are calculated for the point group 2/m35 up to L = 30. 
For L -- 30, the icosahedral group has two independent 
SAF's; a simple method is suggested for making a 
unique choice for these two SAF's. 

1. Introduction 

The pentagonal symmetry so well established in nature 
has entered officially into crystallography only recently 
(Hahn, 1983), and this reserve of our community was 
justified by the well known fact that fivefold axes just 
do not comply with a lattice in three dimensions. With 
the appearance of quasicrystals, this restriction to three- 
dimensional lattices was dropped and the very existence 
of the fullerene C60 as well as of the long-known 
metallocene compounds provide strong arguments to 
accept fivefold symmetry at least locally in a crystal. 

The analysis of the orientationally disordered 
structure of molecules in terms of the molecular 
orientation probability density f (w)  [w - (c~, fl, 3'), 
Euler angles (Press & Hiiller, 1973; Prandl, 1981)] 
requires symmetry-adapted spherical harmonic functions 
(SAF's), in some cases of high order L. The coefficients 
that enter into the SAF's are also needed to formulate 
the symmetry-adapted Wigner functions used in the 
orientational hindrance potential V(w) (James & Keenan, 
1959; Vogt & Prandl, 1983; Gerlach, Vogt & Prandl, 
1984). SAF's for the icosahedral group have been 
used so far in the data treatment of the fullerene C60 
(Michel, Copley & Neumann, 1992; Michel, 1992) 
and of icosahedral quasicrystals (Elcoro, Perez-Mato & 
Madariaga, 1994). 

So far, only low-order icosahedral SAF' s are available 
in the literature: LMax ---- 6, 10, 12, 16, respectively, in 
the monograph by Butler (1981) and in the papers by 
Laporte (1948), Cohan (1958) and Elcoro, Perez-Mato & 
Madariaga (1994). Michel (1992) derived SAF's for L = 
6, 10 in a coordinate system that differs from the other 
authors' and our choice (see Appendix A for comments). 
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In calculating new SAF's, we avoid the standard 
algorithm that decomposes reducible representations into 
irreducible ones by the help of projection operators, 
since this technique needs matrices of progressively 
increasing dimensions (2L + 1). The much shorter 
algorithm we use here starts from a lowest-order seed 
function determined by the standard method and de- 
composes powers of this seed function into higher-order 
SAF's. 

The paper is organized in the following way: in §2, 
we introduce the notation and determine the number 
n~(L) of SAF's. In §3, we sketch briefly the standard 
non-recursive procedure. In §4, we describe the new 
recursive technique and derive the SAF's for L < 30. §5 
contains a short summary. The choice of the coordinate 
system and a motivation for it are given in Appendix A. 

2. Preliminaries and notation 

Let YLM(O, go) -- YLM(X) be a spherical harmonic func- 
tion, P a point group, 3" one of its irreducible repre- 
sentations and nT(L) the multiplicity with which the 
irreducible representation 3" occurs among the YLM(X) for 
fixed L. An index e will always refer to a unit irreducible 
representation. For the YLM(X), we will use the definition 
given by e.g. Edmonds (1968), Butler (1981) and many 
other authors, which in particular implies the Condon & 
Shortley (1935) convention 

Y~M(X) = (--1)MyL-M(X). (1) 

We point out here that Altmann (1957), Cohan (1958) 
and Bradley & Cracknell (1972) do not use the factor 
( -1 )  M given in (1): this has to be taken into account in 
comparing their tables with those of other authors. 

A symmetry-adapted spherical harmonic function 
(SAF) belonging to the irreducible representation 3" will 
be written as 

eL3"#i(X) : E YLM(X)P~I3"[-Zi" (2) 
M 

Here, the index/z counts the 'partners' belonging to 7, 
and so it runs from 1 to d 7, the dimension of 3'. The 
characteristic property of the set of d 7 partners is that 
any one of them is transformed into a linear combination 
of all of the others by an element p c P. The index i 
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= 1,. . . ,  n,y(L) refers to one of the possibilities that the 
irreducible representation "y occurs among the Yt~w(x). 
Functions having different i are not transformed into one 
another by the elements of P. 

In the present paper, we are interested only in totally 
symmetric SAF's of the type e. Since the unit represen- 
tation is always one dimensional, the index # can only 
be 1, and therefore we will drop it from now on in this 
paper. We would like to remind the reader, however, that 
the shortened symbol PL~i(x), 

PL~,(x) = ~ r~(x)Pk~,,  (3) 
M 

applies only to one-dimensional representations. The 
unit representation SAF's can always be chosen as real 
functions with real coefficients pLei. This property, 
together with the Condon & Shortley convention, gives 
a symmetry relation for the coefficients 

p L e i  = ( - -1 )MpL_Mei  . (4) 

The multiplicities n,y(L) given in (5) can be derived 
from grou_p_ character tables [e.g. Butler (1981) for 
P = 2/m35] providing the characters X'y(P) and the 
characters XL(P) are the traces of the matrices 79L(p) 
representing an element p E P: 

n T ( Z ) -  (1/IPI) ~ XT(P)XLfP). (5) 
pEP 

Here, Iel is the order of the group P in question ([e[ - 
120 for 2/m35) and 

x~g(p) = sin(L + 1)qOp/Sin(~p/2) (6) 

for proper rotations with the rotation angle ~p and 

X[Mr'R(p) = (--1)Lx[R(p) (7) 

if p is an improper rotation expressed as a rotation- 
inversion axis. 

The icosahedral group contains (Ljubarski, 1962) as 
proper axes the unit operation together with 12 rotations 
by 72 ° , 12 by 144 ° , 20 third-order rotations and 15 by 
180 ° . Another 60 elements are the combinations of the 
proper.axes with the inversion centre. 

For the unit representation e all X~(P) are + 1. From 
(4) to (6), we obtain multiplicities n~(L) = 1 for L = 
0, 6, 10, 12, 16, 18, 20, 22, 24, 26, 28 and n~(L) = 2 
for I = 30. Since the inversion centre is an element of 
2/m35, only even-parity totally symmetric SAF's occur. 
It is easy to show from (4)-(6) that for orders L _> 30 
the n~(L) are given by 

n~(L + 30m) = n~(L) + m. (8) 

This means in particular that two unit representations 
occur for L = 30, 36, 40, 42, . . . .  We shall point out 
a unique way to calculate the corresponding degenerate 
SAF's. 

3. The standard procedure 

The standard procedure for generating basis functions 
belonging to an irreducible representation "y (Altmann, 
1957; Cohan, 1958; Bradley & Cracknell, 1972; text- 
books of group-representation theory) uses projection 
operators 7:', which in the special case of the unit 
representation are given by 

p~ = (1/[e[) ~ 7~Z:MM,(a,/3,7)p. (9) 
pEP 

The matrices 7) t" have the dimension (2L+ 1) and 
their elements are the Wigner rotation functions 
79~/M, (a,/3, 7)p, where (a,/3,'y)p are the Euler angles 
corresponding to the proper or improper rotation p: 
these angles, for 2/m35, are listed in the paper by 
Cohan (1958). So one projection operator consists of 
120 matrices 7% having (2L + 1) 2 elements each. 

We close this short section with two remarks: 
(1) The projection-operator technique must be used to 

obtain at least one non-trivial PL~i(x), which can then be 
used in the recursive algorithm (§4) as a seed. We will 
use the SAF P6~1 (x) as given by Butler (1981), which of 
course coincides with the corresponding function derived 
by Cohan (1958) once the Condon & Shortley (1935) 
convention is applied to the latter function. 

(2) The projection-operator technique is non- 
recursive: SAF's already known for lower l's are not 
used to calculate higher-L SAF's. 

4. Recursive generation of  basis functions 

The recursive calculation of SAF's, which we apply for 
the extension of the tables given by, for example, Butler 
(1981) and Cohan (1958), uses an elementary theorem 
of group-representation theory, namely that a product of 
unit-representation basis functions, i.e. SAF's, contains 
only unit-representation basis functions, specifically: 

111+12[ 
VLlei l (X)mL2ei2(X)  -" E ci l i2i( l l l2"~L)mLei(X) " 

L = Itl-tEI 
i = 1 ..... n,(L) 

(10) 
In order to perform the multiplication of the 1.h.s.of (10), 
we use the basic definition (3) and the multiplication 
theorem for spherical harmonic functions (Edmonds, 
1968; Lindner, 1984): 

Yllml (X) Yllm2 (x )  

- LM 0 

(/1 
X e l  m2 

(11) 
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with the shorthand notation 

[/] = 2l + 1. (12) 

Thesymb° l s  ( llml m212 L )  i n ( l l )  a reWignercoup_ 

ling coefficients or 3-j symbols, which are non-zero only 
if the triangular rule Ill - 121 _< L < I11 ÷ 121 is obeyed 
and i f m l  + m2 + M = 0. From a combination of 
(10) and (11), we obtain an explicit expression for the 
recursion from the orders 11, 12 to the order L: 

pLei --'ffili2i(lll2;L) ~m (--1)M( l__l 

X e~eil e~-mei2. 

m - M  

(13) 

The common factor ")'i, i2i(lll2;Z) is obtained by normal- 
izing the resulting functions PL~i(x). Equation (13) may 
be used in an obvious way to calculate SAF's  with the 
orders L = 6, 10, 12 from one seed function having (see 
Table 1) l l  : 12 - -  6: the L = 6 result serves in this case 
as a test since it has to reproduce the seed function used. 

The 3-j symbol in (13) becomes algebraically par- 
ticularly simple if the l l , /2 ,  L form a stretched triangle: 
L- -  ll +12. 

In this case, the pl~+.12 become .,t m x l  

Let us demonstrate the basic idea for the order L = 
30. The three possible partitions of 30, namely 6 + 24, 
12 + 18, 10 + 20, require factor functions, which can 
be separated into two sets {(6, 24), (12, 18)} and {(10, 
20) }. In the first set, the largest values of the indices m 
obtained in the factor functions is 5 for ll = 6 and 20 
for 12 -- 24 or 10 for ll = 12 and 15 for 12 = 18. If these 
values are entered into the 3-j symbols of (13) and (14), 
it becomes immediately obvious that, for the resulting 
P 3 0 e l ( X ) ,  all Y30M(X) contributing will have IMI ___ 25. 
So, (ll, 12) = (6, 24) or (12, 18) lead to one unique SAF 
P30~l(X). If, on the other hand, we use (ll, 12) = (10, 20), 
then the resulting function PL~2(x) will contain Y30M(x) 
up to IMI _< 30. 

In order to avoid numerical inaccuracies in the ap- 
plications by truncation effects, we have calculated the 
coefficients/~M,_-i(x) by an integer algorithm using (14) 
on a PC. It is obvious from (14) that the number of 
terms to be determined is in any case very small, since 
all allowed m or M are m = 0 mod 5. 

The results of an application of (13), (14) to the seed 
function P6~l(x) are given in Table 1. As examples of 
high-order functions, we show P30~x(x) and P30~2(x): 
Figs. l(a),  (b) give a level diagram in a stereographic 
projection.* 

em 1+12 "yfii2i(lll2" ll + 12) ~(2ll)!(212)'(ll + 12 + M)! ei = , 
m 

x (ll + 12 - M)!{[2(ll + /2 )  + 1]!(ll + m)! 

x (ll - m)[(12 + m - M)!(12 - m + M)!} -1 

× Pllei, P~-meiz. (14) 

Starting from the lowest-order non-trivial seed function 
with ll --- 6, one cannot reach L = 10 by using (14), so 
we apply (13) for this purpose. SAF's  for all the other 
L's given in Table 1 can be generated successively from 
ll : 6 and 12 = 10, often in several ways, e.g. 16 = 6 + 
10; 1 8 = 6 +  12; 2 6 = 6 + 2 0 =  1 0 +  16; 2 8 = 6 +  
22 = 10 + 18 = 12 + 16. These multiple possibilities 
have been used to check the numerical procedures. 

As mentioned earlier, the subspace of totally sym- 
metric SAF's  becomes two dimensional for L = 30, 36, 
40, . . .  and the projection-operator technique does not 
help in this case to generate a second basis vector once 
a first vector is known. The recursion formalism (13), 
(14) gives a unique answer. The recipe is: 

(i) for a given L create a normalized PL~i(x) having 
the smallest MMAX possible; 

(iX) create a second PLeZ(X) ~z Pt.~l(x). PLeZ(X) 
will contain spherical harmonic functions Yt.M(x) with 
[ml >_ MMAX; 

(iii) using Schmidt's procedure, calculate from 
PL~e(X) a normalized PL~2(x) that is orthogonal to 
Pt,~l(X). 

5. Conclusions 

We present a recursive algorithm for the extension of 
tables containing symmetry-adapted functions and use 
it to derive SAF's  of the icosahedral group 2/m35 up 
to L = 30. The algorithm is algebraically particularly 
simple if the orders l l , /2  of the factor functions and the 
order of the target function are related by L - ll + le 
[(14)1. 

The method given can be generalized for general 
target representations 7 ~ e, for instance by applying 
the theorem that states that products of arbitrary repre- 
sentations with a unit representation 3' ® e contain only 
functions of the representation 7. Again, one needs only 
a minimum set of seed functions to reach high-order 
Pl~,/zi(x). 

Crystallographic applications of the high-order to- 
tally symmetric SAF's  include the determination of 
the orientation probability function f ( a , / 3 ,  7) and/or  
the orientational potential V(a, [3, 7) in orientationally 
disordered molecular crystals, in particular C60 (Schiebel 
et al., 1996). Further applications may be envisaged 
in the analysis of scattering data by quasicrystals or 
by icosahedral biological molecules or assemblies like 
icosahedral viruses. 

* A complete set of contour plots of SAF's with 6 < L < 30 has been 
deposited with the IUCr (Reference: SH0065). Copies may be obtained 
through The Managing Editor, International Union of Crystallography, 
5 Abbey Square, Chester CH12HU, England. 
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Table 1. 

THE GENERATION OF SYMMETRY-ADAPTED FUNCTIONS 

The coefficients of the symmetry-adapted functions of the icosahedral group in a prime-number 
representation 

M\L 6 10 

0 ¢ H  

+_5 -T-v/~ +~/3.11.19 

+-10 

+-15 

+_20 

Norm 

vCF  

1 

12 

T-~/2.11.13 

~/3.13.19 

1 

16 

2 a. ,J5-19.31 

+ ~/3.5.13.17-31 

- ~2.7.17.23-31 

-T-3. ~/17.23- 29 

1 
2.5"- 3v~-5 

18 

~/5.11.17.23 

~/3.7.11.19 

T-~/19-29.31 

1 

20 

~/5.7.23.29 

+x/2.11.17.19-29 

41.  v .19 

+_2. ~/2.11.19.31 

~/11.13-31-37 

l 

M\L 

0 

+-5 

+10 

+15 

+-20 

+_25 

Norm 

22 

2. X/3.5.11.19.31.37 

+~/7.13.23.31.37 

- ~/2.7.17.23.29.37 

+-1o3.  

~/13.19.23.29.41 

1 
5 5 • 2 V ~ ' 3  

24 

7. ~/5.13.23.29 

+ - 2 . 5 9 . ~  

19-x/2.19-3i 

+--2.3.,f11.31-37 

~/31.37.41.43 

1 s-r 

26 

2.3.~/3.13-29.31.41 

+_23. x/5.7-11.23.41 

2~. v/2.5.7.19.23.41 

T-139 • ~/3.5.23-37 

- 89. ~/5.37.43 

+--7..~2.17.37.43.47 
1 

5 6 • . 2V~ '3  

28 

24.3.~/7.31.37.43 

+_~/5.11.13.29.37-43 

- ~/2.3.5.13.17.23.29.43 

+__29. ~/2.5.23.29.41 

- 22 -3. X/2-5" 13-29-41.47 

-T-~/7 • 17.29.41-47-53 

1 
2 . 5 s . ~  

M\L 

0 

_+5 

+_10 

+_15 

+_20 

+_25 

+-30 

Norm 

3 0 -  1 

3.12251- ~ / I i .  13.23-29 

+-2- 5-4639. ~/3.17 . 23. 31 

23.17.~5.7.11.13.17.19.31.37 

+--241. ~/3-5-13-31.37.41.43 

2-5. ~/2.7-11.23-31.37.41.43.47 

-T-~/2-3.13-17-23.31.37.41-43.47-53 

5s.~/71.233.4793 

30-- 2 

23. ~/17.19.31-37"41.43"47"53"59 

+_2.3. ~/3.11.13.19.29.37.41.43-47-53.59 

32 .41. x/5- 7.23.29- 41-43.47- 53.59 

+_24.31. ~/3.5.11.17.19.23.29.47.53.59 

3-2161. ~/2.7-13-17-19.29.53.59 

+_2-101.151. v/2.3 • 11.19.29.59 

71.233.4793- 7v/~.  11 

I 
2.5 r .~/3.71-233.4793 
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A P P E N D I X  A 
T h e  c h o i c e  o f  the  c o o r d i n a t e  s y s t e m  

The icosahedral groups contain two-, three- and five- 
fold axes. Since the PL~i(X) are composed of spherical 
harmonic functions YLM(X), all the M in (2) or (3) 

must be multiples of two, three or five if the 2, 3 or 
5 axis is chosen as the z axis. Clearly, selecting zl15 
introduces the smallest number of terms in the PL~i(X), 
namely 2[L/5] ÷ 1, where [L/5] means the smallest 
integer less than or equal to L/5. A further simplification 
arises if we choose the xz plane as a mirror plane, 
since then all qo-dependent terms in (2) and (3) are 
,,-,cos (5/zcp) with /z = 0, 1 . . . . .  [L/5]. In this case, y 
is parallel to one of the twofold axes in 2/m35. This 
choice of the coordinate system is distinguished among 
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all others by its mathematical economy, i.e. by the 
minimum of non-zero coefficients in the SAF's: it was 
therefore recommended by Cohan (1958) and applied 
also by Butler (1981), who gives the P6~l(X), which we 
use as a seed function, and by Elcoro, Perez-Mato & 
Madariaga (1994). Michel, Copley & Neumann (1992) 
and Michel (1992) use a coordinate system with x,_y 
and z parallel to three of the twofold axes in 2/m35, 
and they derive SAF's for L = 6, 10 by an algorithm 

(a) 

, - , "  L'L" 

| , . ~  r - -~ ' , .  " . L . D  "~ 

p ~ t ~  ~ ~ ' , . . : ~ , , ~  

L~,T~-'--~ 

, ".-;'=_, J 

o ~- ~ ' - - . . ' . : 5 X _ ~ ¢ ~ - :  ', ,., ' ' , l  

, ,',/~, " :  ~ " "  ",~.~1:, ', ? 

--~,,,~ .~._, 

(b) 

Fig. 1. Density contour lines of the functions (a) P30~l(X) and 
(b) P30~2(x) looking down a threefold axis in a stereographic 
projection. Positive and negative densities are marked by full and 
dotted lines, respectively. 

that is tightly connected to the geometry of the C60 
molecule. With this choice, the number of independent 
coefficients in the SAF's increases appreciably, in par- 
ticular for larger L, e.g. for P30~2(x) to 16 as compared 
to 7 for Cohan's choice. In all practical applications, 
whether with quasicrystals or with fullerenes, one uses 
series expansions of the relevant quantities in terms of 
orthonormal SAF's,  in which the expansion coefficients 
are, of course, independent of the choice of the axes x, y 
and z as long as the objects, e.g. experimental densities, 
and the SAF's are referred to the same symmetry- 
adapted coordinate system. In some cases, one might 
wish to rotate the object by arbitrary axes in crystal 
space. This is for instance the case in visualizations of 
the rotational potential written in terms of symmetry- 
adapted Wigner functions (Vogt & Prandl, 1983). The 
algorithm for the determination of the Euler angles 
(~, fl, ~,) needed for this purpose from the rotation angle 
¢ about an axis n is given in Altmann (1986). 
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